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Abstract

This paper proposes a novel signal processing
technique employing both neural networks and
classical signal processing methods to effectively
map the surface electrical signal concomitant with
muscle contraction (EMG) to human muscle

activation. With a computational musculoskeletal
model it is shown that these predicted muscle
activations, accurately estimate joint torque for
various ballistic flexion exercises. Through the

systems ability to generalize across exercise trials
and predict a classic ballistic Lriphasic activation
pattern, a hybrid musculoskeletal system may be
able to accurately and reliably model extremely
complex physiological systems with clinical
implications.

1. Introduction

Although EMG is simply a by-product of muscle
activation [3], it is readily obtainable and is

currently the only non-invasive indicator of muscle
activation intensity. If the complex relationship
between EMG and muscle force can be determined,

it will provide researchers with accurate non-
invasive access to human muscle forces. Such

accurate estimations of muscle forces and joint

stresses would provide engineers with valuable
design parameters to be used in prosthetic limb and
joint design. A non-invasive relationship between
EMG and muscle force could also aid in the

development of an EMG-driven above-elbow
prosthesis [4] exploiting the synergistic nature of
the human muscular system in movement
coordination [4,5].

The complex relationship between EMG and the
joint mechanical response can be broken down into
three parts:
l) Observable EMG signal and muscle activations
2) Individual muscle activations and forces
3) Individual muscle forces and net joint torque.

While the second and third segments of this triad

are modeled computationally as a four muscle, one
degree of freedom (DOF) joint mechanical system,
the first relationship is modeled separately as a
neural network. This neural structure "pre-

processes" and transforms experimental processed
EMG into muscle acUvation data used to drive the

musculoskeletal model and predict muscle forces
and net joint torque. The complete hybrid system
model is shown below in Figure 1.I.
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Figure 1.I: Complete Hybrid System Model

2, Muscuioskeletal Model

This upper extremity model reduces the
complexity of the motor control task to one DOF
(flexion/extension) and four muscles: biceps,
brachialis, brachioradialis and triceps. This
reduction in DOF to a simple hinge joint does not
produce results significantly different from other
approaches consisting of two or more DOF [6].
Development of this musculoskeletal model for
the upper extremity ensues from previous work to
which the reader is referred [1,2,7,8,9 and 10].

3. Experimental Methods

A ballistic movement (a single maximally rapid
flexion with an abrupt stop) was chosen over other
movements to provide the system with distinct
images of muscle activation patterns.

After digitally sampling at I000 Hz, the surface
EMG data were zero-mean averaged, full-wave
rectified and low-pass filtered (fc = 8 Hz). Other

network input parameters dependent on human
anthropometric data were obtained from [11]. Each
neural network training set consisted of processed
EMG, net joint torque, angular position and

velocity.

4. Neural Networks

A multi-layer perceptron was used to model the
relationship between the observable EMG data and



muscleactivations(Fig.4.1).Batcherrorupdating
wasusedduringall trainingsessions.
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Figure 4.1: Typical Feedforward Network

5. Results

Multiple tests were conducted using the hybrid
Neural Network-Musculoskeletal Model:

• Open Loop, Single Trial: A single flexion trial is
run in open-loop fashion by furnishing
experimental kinematic data throughout the
experimental trajectory (Figure 4.2, Open Loop).
• Closed Loop, Single Trial: A single ballistic
flexion trial was run while furnishing only initial
experimental angular position and velocity and
allowing kinematic information to flow in a
closed loop fashion (Figure 4.2, Closed Loop).
• Activation Loss Function: A neural loss function

was employed to minimize both system torque
error and overall muscle activation.

• Single Trial Generalization: A network was
trained on a single ballistic flexion trial. The
system's ability to generalize was evaluated by
observing performance with new flexion data
inputs.
• Multi-Trial Generalization: A network was

trained across multiple ballistic flexion trials and
was evaluated across several new flexion trials.
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Figure 4.2: Open vs. Closed Loop Configuration

5.1 Open Loop, Single Trial Network
After training the network on a single flexion data
set in open loop configuration, a stable minimum
was located resulting in a torque error coefficient

of _=0.45 as calculated in Equation 5.1.

(5.1)

From Figure 5.1, it can be seen that the major
deviations between experimental data and system
response are during the rapid deceleration and large
negative net joint torque.
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Figure 5.1" Single Flexion, Open Loop Results

In order to verify the validity of the network

mapping, muscle activation curves (Figure 5.2) and
force profiles which resulted in the torque
trajectory were analyzed.
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Figure 5.2: Resultant Muscle Activation

Figure 5.2, reveals that the neural network found a
solution to the EMG to activation mapping

problem that used the biceps as the primary flexor.
Although the activation trajectories for this
mapping resulted in an accurate torque profile,
these activations and force profiles (not shown) do
not exhibit the synergistic nature expected of a
ballistic movement are not physiologically
feasible. Because the elbow joint complex is a
redundant system (there are more actuators than



degreesof freedom),this mapping,although
physiologicallyunrealistic,isa validsolution.

5.2 Closed Loop, Single Trial Network
To test the system's ability to converge on a
solution in closed-loop configuration, kinematic
output from the model was allowed cycle back

into the system input. Instead of initializing the
weight matrix to random values as is standard for
a new neural network, the weight matrix was

saved from the previous open loop trial and the
system was allowed to train.

Subsequent training (with the same experimental
data set) of the closed-loop configuration with
low, stable weight updates resulted in a final

torque error of £=0.28 as shown in Figure 5.3.
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Figure 5.3: Single Flexion, Closed Loop Results

Although the mapping of the closed loop trial
resulted in lower torque error than the open loop
system, significant kinematic tracking errors arose.
Because the network in this configuration used net

joint torque as the sole "teacher" and basis for the
network error function, the overall torque error is
minimized without regard to joint kinematics. As
a result, any discrepancies between experimental
and model kinematics accumulated and resulted in

inaccurate kinematic predictions.

5.3 Results with Activation Loss Function

Although the simulation results for the
aforementioned trials were physiologically
unrealistic, they were indeed valid for the

predetermined loss function. In order to force the
results to a physiologically realistic solution, an
arbitrary activation loss function was added to the
existing torque-error loss function. This change in
loss function alters the weight space and, hence,
alters both the minima in the weight space and the

way the network learns. With the addition of this
arbitrary activation loss function, the system
error, J, becomes Equation 5.2.

where: F = System Torque

Fd= Desired Torque

(p(a)= Activation. Loss Fn.

Because this new system loss function penalizes
large activations (Equation 5.3) as well as torque
error, the network tends to minimize both system
torque error and overall network activation
simultaneously.

_o(a) = k[(qj,a_,,) 2+ (%a_/ + (%a_,,/ + (_,a,_/] (5.3)

where: k= a variable learning constant

(Pi= weighting functions

(currently q_l=qO2=(P3=_04= 1.0).

Because the human body tends to perform activities
in a metabolically efficient manner, it can be
hypothesized that if the overall muscle activation
is reduced (while maintaining accurate torque
tracking), then all muscle activations will
"balance," resulting in an even distribution of
work across all muscles. The activation loss
function was chosen over other alternatives

(minimizing jerk [121, effort [13], or torque-change
[14] because muscle activation is independent of
other muscle parameters, such as force and length,
and is easily accessible.

After starting with a random weight space and
repeating the same general training algorithm as in
previous trials, the network converged with

favorable results, _= 0.197 (Figure 5.4).
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Figure 5.4: Tracking Results with Loss Function

These new activations, compared to those without
the activation loss function, had a more balanced
distribution (Figure 5.5) and were brought to full
activation simultaneously and synergistically, as is
the case with typical ballistic clinical data.

J = - r, )' + (p(a)] (5.2)
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Figure 5.5: Activations with Loss Function

As expected from the acdvation trajectories, the
individual muscle forces are also equally
distributed across the three flexors (Figure 5.6).
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Figure 5.6: Flexor Forces for Loss Function Trial

5.4 Open Loop Single Trial Generalization
To test the system's effectiveness as a "smart"

signal processing tool, a trained network with
learning disabled in recall mode, was presented
with new "unseen" flexion EMG data sets.

Although the system predicted the same general

bipolar shape expected for a ballistic movement,,
the tracking results were less accurate across the
new trials (Table 5.1). These errors resulted from
erroneous timing of the primary activation peak

and temporal displacement of the torque
wave forms.

Table 5.1: Single-Trial Generalization Results
Trial

Number

t*

Correlation

Error, E

0.428

Average Torque
Error (Nm)

*: Network trained on

2.081

2 1.55l 6.245
3 1.922 9.595
4 1.820 8.119
5 1.417 6.949
6 2.257 9.784
7 1.036 5.875
8 1.900 7.575

this trial

5.5 Open Loop Multi-Trial Generalization
The last test involved testing the system's ability
to generalize, after training it on several trials (as
opposed to one trial).The network, trained on five
separate exercise trials until a correlation error
function below 0.5 was reached, was tested across
three new exercise trials (Table 5.2).

Table 5.2: Multi-Trial Generalization Results

Trial
Number

Correlation

Error, £

0.422

Average Torque
Error (Nm)

1* 1.979
6 0.829 3.952
7 2.125 12.502
8 0.706 3.406

*: Network trmned on this trial and several others

Although, the tracking results are of considerable
variability, these results are significantly better
when compared to the single-trial generalization
results. Most importantly, a classic agonist-
antagonist-agonist (triphasic) muscle activation
pattern [16] was observed in the bracbialis,
brachioradialis and the triceps muscles for both

trial 6 and trial 8 (Figure 5.7). The appearance of
this classic pattern indicates that the network is
detecting underlying features common to typical
ballistic EMG signals. Further, this triphasic

pattern is observed across several trials and in
trials in which the network did not originally
train.
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Figure 5.7: Muscle Activations from Multi-Trial
Generalization

6. Discussion and Conclusions

The neural network-musculoskeletal model hybrid

system was trained in several configurations and
tested over a variety of situations ranging from

simple open loop recall to closed loop

generalizauon.

The open loop learning test resulted in an accurate
torque profile, but the activation profiles were not
physiologically feasible: the flexors did not act
synchronously.

The closed loop trial resulted in significant
destabilizing tracking errors for joint position and



velocitydueto positivefeedbackintroducedfrom
closingthekinematicloop and fromintegrating
theresultingjoint accelerationsignalto arriveat
joint velocityandposition.

Tocorrectforphysiologicallyinaccurateactivation
trajectoriesin theopenloop trial, anactivation
lossfunctionwasaddedto thesystemto aid the
system in finding a solution whoseforce
trajectoriesarephysiologicallyrealistic.Becauseit
is extremelydifficult to accuratelymeasure
individualhumanmuscleforcesin vivo during a
similar movement, we can not clinically verify

this conclusion given today's technology [15].

In the cross-trial generalization tests, even though
system tracking accuracy was compromised, the
system was able to predict the same general
bipolar torque curve shape typical of ballistic
movements.

The multi-trial generalization tests revealed the
classic ballistic triphasic activation pattern
indicating that the neural network was detecting
underlying features common to typical ballistic
EMG signals.

The results from this research indicate that a

hybrid musculoskeletal system may be able to
accurately and reliably model extremely complex
physiological systems with clinical implications.
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